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Abstract— Vehicle Routing Problem with Time windows 
(VRPTW) is an example of scheduling in constrained 
environment. It is a well known NP hard combinatorial 
scheduling optimization problem in which minimum number 
of routes have to be determined to serve all the customers 
within their specified time windows. So far different analytic 
and heuristic approaches have been tried to solve such 
problems. In this paper we proposed an algorithm which 
incorporates a new local search technique with genetic 
algorithm approach to solve time constrained vehicle routing 
and scheduling problems in various scenarios.  

Keywords- Vehicle routing problem, genetic algorithm, 
heuristics based search techniques  

I.  INTRODUCTION  

Scheduling and routing problems have attracted 
considerable attention in recent years due to their wide 
applicability and importance in determining efficient 
distribution strategies to reduce operational cost in 
transportation logistics. VRPTW is an extension of the 
Vehicle Routing Problems (VRP) arising in transportation 
logistics that usually involve scheduling in constrained 
environment.  

In VRPTW, a set of K identical vehicles with fixed and 
identical capacity Q is to be routed from a central depot to a 
set of N geographically scattered customers which have 
varying demands di and pre-defined time windows [ai, bi] 
where i ε N . Vehicles arriving later than the latest arrival 
times (i.e. after bi) are penalized while those that reach the 
customer earlier than the specified earliest arrival time (i.e. 
before the ai) incur waiting time wi until service is possible. 
This penalizes the management either in the direct waiting 
cost or the increased number of vehicles to be used. This 
type of time window constraint is known as a hard time 
window. 

The objective of VRPTW is to service all the customers 
as per their requirement while minimizing the number of 
vehicles required as well as the total travel distance of all 
the vehicles used without violating capacity constraints of 
the vehicles and the customer’s time window requirement 
such that each customer is visited in any way once and only 
once by one of the vehicles. All the routes are to start and 
ultimately end at the depot. Figure 1 shows a graphical 
model of VRPTW and its solution. 

 Routing and scheduling problems arise in a wide range 
of practical decision making situations. VRPTW arises in 
retail distribution, school bus/taxi scheduling, waste 
collection, courier/mail delivery/pickup, and airline/railway 

fleet routing etc. VRPTW is NP-hard. It has been extensively 
investigated in recent years using analytic optimization 
techniques, heuristics and meta-heuristics approaches.   

 

 
Figure 1.  Typical output for VRPTW 

The early work on VRPTW can be broadly divided into 
two categories: exact optimization and heuristic algorithms. 
Using exact optimization techniques, Kohl et al. [11], Larsen 
[12] and Chabrier [4] obtained significant improvements in 
Solomon's benchmark problem instances. Survey of the 
VRPTW literature by heuristics and meta-heuristics 
approaches has been given by Bräysy et al. [3] and Minocha 
et al. [14]. Cordeau et al. [5] and Rochat et al. [16] tried to 
solve these problems using tabu search whereas Gambardella 
et al. [7] considered ant colony optimization approach. Shaw 
[18] applied large neighborhood search (LNS). This was 
extended by Ropke et al. [17] as Adaptive-LNS approach to 
solve VRPTW problems. Homberger et al. [9] proposed 
parallelization of a two-phase metaheuristic technique for 
solving VRPTW. A complete survey of the VRPTW 
literature has been given by Cordeau et al. [6] which includes 
both the categories. 

The Genetic Algorithm (GA) approach was proposed by 
Holland [8] in 1975. It is an adaptive heuristic search method 
that mimics evolution through natural selection. It works by 
combining selection, crossover and mutation operations of 
genes. The selection procedure drives the population toward 
a better solution while crossover uses genes of selected 
parents to produce new offsprings that form the next 
generation. Mutation is used to escape from local minima. 
The genetic algorithm approach has now become popular as 
it helps in finding reasonably good solutions for complex 
mathematical problems, NP-hard problems like VRP. 

Blanton et al. [2] were the first to use GA approach to 
solve VRPTW. They hybridized GA approach with a greedy 
heuristic. A cluster-first, route-second method using genetic 
and local search optimization was used by Thangiah [22] and 
GENEROUS by Potvin et al. [15]. A multi-objective 
representation of VRPTW using pareto-ranking was used by 
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Ombuki et al [13]. Others such as Berger et al. [1], Tan et al. 
[21] and many more also used GA for solving VRPTW 
problems.  

In this study we consider an alternative approach based 
on the merger of genetic algorithm approach with new local 
search heuristics for solving VRPTW problems. In section 
II we present our proposed hybrid of GA with heuristics 
based local search. Section III shows the results we obtained 
in solving some of the Solomon’s benchmark problem by 
using proposed algorithm followed by conclusion in section 
IV. The work presented in this paper is an extension of the 
work presented and published in the proceedings of 
“International Conference on Electronics Computer 
Technology 2011”. 

II. HYBRID GENETIC ALGORITHM 

Although GA perform well in global search, but they 
usually take long time to converge to the global optimal 
solution. On contrary local searches (valid in a small region 
of search space) are quick in finding an optimal solution. 
Thus to improve the efficiency of GA we try to incorporate 
local searches with them. We call these as hybridized GA.  

After building the initial population, all individuals are 
evaluated according to the fitness criterias. The evolution 
continues with tournament selection, where good individuals 
are selected for reproduction. Two best individuals are kept 
for next generation without going through genetic operations. 
Crossover and mutation are then applied to modify the 
selected individuals to form a new feasible generation. To 
further improve the individuals, local search heuristics are 
applied. We generate a random number r between 0 and 1, if 
r is less than 0.8; one of the local search algorithms is then 
executed, otherwise no local search algorithm executed. The 
Process is continued iteratively till the best solution does not 
change for a specified number of generations or till an 
overall specified number of generations have been 
performed. The best solution is taken as the desired optimal 
solution. 

The working of the proposed algorithm is summarized in 
the flowchart is shown in Figure 2. 

A. Chromosome and Individual Representation  

The representation of the GA chromosome in the present 
work is very simple. Each customer has an unique integer 
identifier i, where i ε N. An individual, which is a collection 
of chromosomes, represents a complete routing solution. 
Each chromosome represents a route, which is variable in 
length, contains a sequence of customers in the order in 
which they are visited by the vehicle. A different vehicle is 
needed to serve every chromosome of the individual. Every 
individual and every route must be feasible, in terms of 
capacity and time window constraints. The central depot is 
not considered in this representation, because all routes 
necessarily start and end in it. Figure 3 represents a 
complete routing solution for a problem instance with 25 
customers, consisting of 3 routes which are served by 3 

vehicles; genetically we call it as 3 chromosomes and 
complete solution as individual. 

 
Figure 3.  An individual with 3 chromosomes/routes. 

B. Initial Population 

An initial population is built such that each solution is a 
feasible candidate solution i.e. every individual and every 
chromosome/route in the population satisfies time window 
and capacity constraints. We first generate a feasible solution 
using Push Forward Insertion Heuristics (PFIH) first 
introduced by Solomon [19]. This method has been 
frequently used in literature. Details of this method are 
available in Thangiah [22]. Rest of the solutions of initial 
population is generated by selecting the customers in a 
random manner and inserting them in an existing route, if 
one exists, otherwise a new route is created. Any customer 
that violates any constraint is deleted and a new route is 
added to serve the customer. This process is repeated until all 
the customers get served and a feasible initial population has 
been generated. 

C. Fitness 

As soon as all the individuals have been created, they are 
ranked as per their fitness. In this study three fitness criteria 
have been used one by one:- 

1) Distance Traveled and Number of Routes (DR): In 
this case we minimize the total distance traveled keeping at 
the same time the number of vehicles as low as possible as 
each route requires one vehicle to operate it.  

2) Number of Routes and Distance traveled (RD): Same 
as (1) however with the priorities interchanged. First priority 
is to reduce the number of routes and second priority is to 
reduce total distance traveled. 

3) Weighted Mean (WM): In this case we apply 
weighted sum method on total distance traveled and on the 
number of routes required to calculate the fitness of the 
individuals. This method requires adding the objective 
functions of the problem together using weighted 
coefficients for each individual. Thus we transformed 
VRPTW into a single-objective optimization problem where 
the fitness of an individual F(x) is evaluated as: 

 
  F(x) = α · V + β · TD 
  
     TD = ∑       ∑       ∑   tij · xijk  

  

                  iN   jN   kV 

 
where α and β are weight coefficients associated with total 
number of vehicles, V and total distance traveled by 
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vehicles, TD respectively. The weight values of the 
coefficients used here were established empirically and set at 
α = 100 and β = 0.001. 

D. Selection and Elitism 

In selection, parents are selected for crossover. There are 
many methods proposed in the literature for this. In this 
study, an n-way tournament selection procedure has been 
used. Here n individuals are randomly selected and then the 
individual with highest fitness is declared as the winner. This 
process is repeated until the number of selected individuals 
equals to the number necessary for crossover. In this study, 
tournament size, i.e. n has been taken to be 3. 

In the elitism process the good individuals are retained 
for reproduction. This ensures that the best solution obtained 
from the present population is copied unaltered in the next 
population. We replace the two worst individuals in the new 
population with the best two individuals of the parent 
population. 

E. Crossover and Mutation 

The classical single/double point crossover is not 
appropriate for scheduling problems like TSP or VRP 
because duplication and omission of vertices produce 
infeasible sequences in the offspring. Therefore in this study 
we have used route-exchange crossover. Once a pair of 
individuals is selected for crossover, efforts are made to 
exchange a route that has minimum number of nodes in each 
of the two individuals. To ensure that all individuals are 
feasible routing solutions after crossover, any duplication is 
deleted. 

Mutation is necessary for inserting new characteristics 
that are not present in the current individuals. Without 
mutation the search gets limited to a very small area in the 
feasible region. In this study effort is made to transfer 
customers from route that has minimum number of nodes to 
other routes if possible to decrease the number of routes. 

F. Local Search Heuristics 

In this study we incorporate two new local search 
heuristics to search for better routing solutions of VRPTW. 
These searches are ‘Replacing Next Neighbour’ and 
‘Reinserting Random Customer’. 

1) Replacing Next Neighbour: In this local search 
heuristics after having selected an individual randomly, a 
node say Cj is randomly chosen on one of its routes and an 
effort is made to replace its next neighbour Cj+1 by some 
alternative acceptable node, say Ck and then reinsert all the 
nodes from Cj+1 onwards of this route in other routes. 
Necessary modifications are carried to generate a new 
feasible solution.   

2) Reinserting Random Customer: This heuristic 
chooses a random customer from a randomly selected 
individual and tries to reinsert it in some other route. If 
possible we insert it and modify the existing solution else 
return the same individual. 

III. EXPERIMENTAL RESULTS AND COMPARISON 

In this section we summarize the results of the 
computational experiments performed by us using the 
proposed algorithms on a set of benchmark test problems 
selected from Solomon’s set of problems.  

Solomon [19] generated a set of 56 problems which have 
been frequently used in the literature to assess and compare 
the performance of various algorithms developed for solving 
VRPTW problems. The problems vary in available fleet size, 
vehicle capacity, traveling time of vehicles, spatial and 
temporal distribution of customers to be served. The classes 
R1 and R2 have customers randomly distributed, while the 
classes C1 and C2 have customers clustered. The classes 
RC1 and RC2 contain a subset of customers randomly 
disposed and the other part clustered. Problem sets R1, C1 
and RC1 have a short scheduling horizon and allow only a 
few customers per route (approximately 5 to 10). In contrast, 
the sets R2, C2 and RC2 have a long scheduling horizon 
permitting many customers (more than 30) to be serviced by 
the same vehicle. Larger problems have one hundred 
customers to be served. Smaller problems have been created 
out of these by considering only the first 25 or first 50 
customers.  

Each problem has been solved ten times using three 
different fitness criteria using proposed algorithms. In our 
present study we have chosen from these sets: 15 problems 
of 25 customers; 10 problems of 50 customers and 5 
problems of 100 customers. The best and the worst results 
(fitness criteria wise) are listed in Table 1 for 25 node 
problems. Table 2 shows results for 50 node problems and 
Table 3 for 100 node problems. Following parameters have 
been used: Population Size = 100; Generation size = 1000; 
Crossover rate = 0.80; Mutation rate = 0.20. 

Table 1, 2 and 3 present a summary of our results and 
compare them with the best-known routing solutions 
available in literature. Bold numbers in Table 1, 2 and 3 
indicate that the obtained solutions are the same as the best-
known or there is an improvement on the currently best 
known solution. The proposed algorithm has been coded in 
C++ language and implemented on a laptop having Intel(R) 
Core(TM) 2 Duo 2.0 GHz. Regarding the complexity of the 
algorithms it is of order O(MN2).  Here M is the number of 
objectives and N is the total feasible solutions. This is due 
the fact that for each objective each feasible solution has to 
be evaluated and for ranking each of the N solutions are 
compared with each other. 

 The proposed algorithms have produced new improved 
results in RC201-RC208, R105 and R109 problems of 25 
nodes with smaller number of vehicles but with slightly 
higher routing cost. Similarly for 50 node problems, C2 and 
R2 show some good solutions which need lesser vehicles, in 
all the three criteria’s. In 100 node problems, for R101, we 
obtained the best-known solution in RD and WM criterias. In 
100 node problem for RC101, we obtained one solution in 
the Table 3 that have better distance scores than the best 
known solution. However, it needs more vehicles than the 
best-known solutions. For rest of the cases, almost all the 
results are within (10%) of the best-known, in some cases 
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TABLE 2: COMPARISON OF BEST KNOWN RESULTS WITH THE RESULTS GENERATED BY PROPOSED GENETIC ALGORITHMS FOR SOLOMON’S 50 CUSTOMERS 

SET PROBLEM. 
 

Problem DR RD WM Best 
Known [Ref.] Best Worst Best Worst Best Worst 

 
C101 5/ 363.25 6/ 513.01 5/ 388.77 6/ 544.31 5/ 363.25 6/ 573.77 5/ 362.5  [11] 
C201 2/ 501.13 2/ 561.43 2/ 515.81 2/561.43 2/ 514.52 2/ 561.43 3/ 360.2  [12] 
C205 2/ 793.00 2/ 950.90 2/ 780.91 2/ 958.59 2/ 740.88 2/ 922.56 3/ 360.2  [12] 
R101 12/ 1058.65 12/ 1244.89 12/ 1055.56 12/ 1202.06 12/1096.30 12/ 1209.51 12/ 1044 [11] 
R201 3/ 1229.78 3/ 1440.08 3/ 1169.20 3/ 1426.84 3/ 1217.27 3/ 1368.65 6/ 791.9  [10] 
R202 3/ 1181.61 

4/ 1074.41 
3/ 1282.16 3/ 1229.69 

4/ 1087.02 
3/ 1254.81 3/ 1209.41 3/ 1307.59 5/ 698.5  [10] 

R203 3/ 1242.34 
4/ 1022.13 

4/ 1212.08 3/ 1138.23 
4/ 1046.72 

4/ 1245.69 3/ 1228.47 3/ 1470.93 5/ 605.3  [4] 

R206 3/ 1044.94 3/ 1280.41 3/ 1061.60 3/ 1285.88 3/ 936.45 3/ 1206.01 4/ 632.4  [4] 
R209 3/ 1051.73 3/ 1260.82 3/ 1121.36 3/ 1312.52 3/ 1113.47 3/ 1256.93 4/ 600.6  [10] 
RC101 8/ 977.51 10/ 1105.44 8/ 974.70 10/ 1105.96 8/ 982.62 10/ 1098.56 8/ 944     [11] 

 
 

TABLE 3: COMPARISON OF BEST KNOWN RESULTS WITH THE RESULTS GENERATED BY PROPOSED GENETIC ALGORITHMS FOR SOLOMON’S 100 CUSTOMERS 

SET PROBLEM. 
 

Problem DR RD WM Best 
Known [Ref.] Best Worst Best Worst Best Worst 

 
C101 10/ 829.70 13/ 1025.76 10/ 828.94 12/ 1194.02 10/ 828.94 11/ 1095.21 10/ 828.94  [16] 
R101 20/ 1736.6 21/ 1901.16 20/ 1733.9 21/ 1928.30 20/ 1747.22 21/ 1831.87 19/ 1650.8  [16] 
R102 18/ 1677.4 20/ 1846.80 18/ 1681.97 20/ 1805.05 18/ 1685.79 20/ 1818.68 17/ 1486.12[16] 
R105 17/ 1539.5 18/ 1858.66 17/ 1535.08 18/ 1783.36 17/ 1539.5 18/ 1919.20 14/ 1377.11[18] 
RC101  15/ 1717.31 19/ 2009.08 15/ 1720.82 18/ 1970.63 15/ 1630.09 19/ 2019.50 14/ 1696.94[20] 

 
  

Problem DR RD WM Best 
Known [Ref.] Best Worst Best Worst Best Worst 

 
C201 2/ 219.10 2/ 237.15 2/ 215.54 2/ 282.25 2/ 215.54 2/ 237.15 2/ 214.7  [11] 
R101 8/ 618.33 8/ 649.07 8/ 618.33 8/ 644.68 8/ 618.33 8/ 656.49 8/ 617.1  [11] 
R102 7/ 580.05 7/ 675.54 7/ 579.94 7/ 671.91 7/ 580.20 7/ 640.72 7/ 547.1  [11] 
R105 6/ 531.80 6/ 616.00 5/ 559.84 6/ 657.10 5/ 588.34 6/ 598.79 6/ 530.5  [11] 
R109 5/ 490.03 5/ 641.16 4/ 517.29 6/ 559.10 5/ 459.75 5/ 608.68 5/ 441.3  [11] 
RC105 4/ 457.56 5/ 515.82 4/ 457.56 5/ 554.47 4/ 460.91 5/ 571.98 4/ 411.3  [11] 
RC106 3/ 363.17 4/ 458.16 3/ 360.98 4/ 469.48 3/ 361.51 4/ 461.42 3/ 345.5  [11] 
RC201 2/ 509.46 2/ 656.83 2/ 509.46 2/ 670.59 2/ 519.35 2/ 654.69 3/ 360.2  [12] 
RC202 2/ 480.24 2/ 652.62 2/ 504.03 2/ 617.28 2/ 513.23 2/ 663.36 3/ 338.0  [10] 
RC203 2/ 425.61 2/ 557.07 2/ 435.48 2/ 544.11 2/ 458.86 2/ 575.30 3/ 326.9  [4] 
RC204 2/ 407.86 2/ 585.45 2/ 402.31 2/ 590.51 2/ 421.24 2/ 501.35 3/ 299.7  [4] 
RC205 2/ 459.57 2/ 662.42 2/ 567.16 2/ 697.56 2/ 506.57 2/ 624.75 3/ 338.0  [12] 
RC206 
 

1/ 594.92 
2/ 501.62 

1/ 630.47 1/ 594.92 
2/ 495.73 

1/ 630.47 1/ 649.04 
2/ 518.72 

1/ 682.91 3/ 324.0  [10] 

RC207 2/ 428.78 2/ 619.22 2/ 424.43 2/ 600.88 2/ 435.51 2/ 574.74 3/ 298.3  [10] 
RC208 1/ 431.07 1/ 507.23 1/ 431.07 1/ 527.35 1/ 419.26 1/ 494.63 2/ 269.1  [4] 
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Figure 2. Flowchart of proposed Algorithm 
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like in R102 and R105 for 100 node problem results are 
within (15%) of best-known results. In some cases like 
RC206, R202 and R203 there are two reported solutions in 
the Table 1 and Table 2 which have lesser number of 
vehicles than the best-known with higher routing cost. 

IV. CONCLUDING REMARKS 

Vehicle routing problem with time windows involves the 
optimization of routes for multiple vehicles so as to meet all 
constraints and to minimize the number of vehicles needed 
and total distance traveled. The proposed hybrid algorithm 
incorporates GA approach with new heuristics in local 
search. Performance of proposed algorithms is comparable 
to those available in literature and in some cases even better 
in terms of number of vehicles which means less fuel, 
manpower and vehicle maintenance cost with more distance 
to travel. As for future work, it may be interesting to test 
proposed algorithm on some application of VRPTW. 
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